Diagonalizing matrices over operator algebras
نویسندگان
چکیده
منابع مشابه
Diagonalizing Matrices over Aw*-algebras
Every commuting set of normal matrices with entries in an AW*algebra can be simultaneously diagonalized. To establish this, a dimension theory for properly infinite projections in AW*-algebras is developed. As a consequence, passing to matrix rings is a functor on the category of AW*-
متن کاملApproximately diagonalizing matrices over C(Y).
Let X be a compact metric space which is locally absolutely retract and let ϕ: C(X) → C(Y,M(n)) be a unital homomorphism, where Y is a compact metric space with dim Y ≤ 2. It is proved that there exists a sequence of n continuous maps α(i,m): Y → X (i = 1,2,…,n) and a sequence of sets of mutually orthogonal rank-one projections {p(1,m),p(2,m),…,p(n,m)} C(Y,M(n)) such that [see formula]. This is...
متن کاملOn Tridiagonalizing and Diagonalizing Symmetric Matrices with Repeated Eigenvalues
We describe a divide-and-conquer tridiagonalizationapproach for matrices with repeated eigenvalues. Our algorithmhinges on the fact that, under easily constructivelyveriiable conditions,a symmetricmatrix with bandwidth b and k distinct eigenvalues must be block diagonal with diagonal blocks of size at most bk. A slight modiication of the usual orthogonal band-reduction algorithm allows us to re...
متن کاملPoincaré Supersymmetry Representations Over Trace Class Noncommutative Graded Operator Algebras
We show that rigid supersymmetry theories in four dimensions can be extended to give supersymmetric trace (or generalized quantum) dynamics theories, in which the supersymmetry algebra is represented by the generalized Poisson bracket of trace supercharges, constructed from fields that form a trace class noncommutative graded operator algebra. In particular, supersymmetry theories can be turned...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1983
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1983-15091-7